412 research outputs found

    10 Security and Privacy Problems in Self-Supervised Learning

    Full text link
    Self-supervised learning has achieved revolutionary progress in the past several years and is commonly believed to be a promising approach for general-purpose AI. In particular, self-supervised learning aims to pre-train an encoder using a large amount of unlabeled data. The pre-trained encoder is like an "operating system" of the AI ecosystem. Specifically, the encoder can be used as a feature extractor for many downstream tasks with little or no labeled training data. Existing studies on self-supervised learning mainly focused on pre-training a better encoder to improve its performance on downstream tasks in non-adversarial settings, leaving its security and privacy in adversarial settings largely unexplored. A security or privacy issue of a pre-trained encoder leads to a single point of failure for the AI ecosystem. In this book chapter, we discuss 10 basic security and privacy problems for the pre-trained encoders in self-supervised learning, including six confidentiality problems, three integrity problems, and one availability problem. For each problem, we discuss potential opportunities and challenges. We hope our book chapter will inspire future research on the security and privacy of self-supervised learning.Comment: A book chapte

    Breaking Free from Fusion Rule: A Fully Semantic-driven Infrared and Visible Image Fusion

    Full text link
    Infrared and visible image fusion plays a vital role in the field of computer vision. Previous approaches make efforts to design various fusion rules in the loss functions. However, these experimental designed fusion rules make the methods more and more complex. Besides, most of them only focus on boosting the visual effects, thus showing unsatisfactory performance for the follow-up high-level vision tasks. To address these challenges, in this letter, we develop a semantic-level fusion network to sufficiently utilize the semantic guidance, emancipating the experimental designed fusion rules. In addition, to achieve a better semantic understanding of the feature fusion process, a fusion block based on the transformer is presented in a multi-scale manner. Moreover, we devise a regularization loss function, together with a training strategy, to fully use semantic guidance from the high-level vision tasks. Compared with state-of-the-art methods, our method does not depend on the hand-crafted fusion loss function. Still, it achieves superior performance on visual quality along with the follow-up high-level vision tasks

    Optimal covariance matrix estimation for high-dimensional noise in high-frequency data

    Full text link
    In this paper, we consider efficiently learning the structural information from the highdimensional noise in high-frequency data via estimating its covariance matrix with optimality. The problem is uniquely challenging due to the latency of the targeted high-dimensional vector containing the noises, and the practical reality that the observed data can be highly asynchronous -- not all components of the high-dimensional vector are observed at the same time points. To meet the challenges, we propose a new covariance matrix estimator with appropriate localization and thresholding. In the setting with latency and asynchronous observations, we establish the minimax optimal convergence rates associated with two commonly used loss functions for the covariance matrix estimations. As a major theoretical development, we show that despite the latency of the signal in the high-frequency data, the optimal rates remain the same as if the targeted high-dimensional noises are directly observable. Our results indicate that the optimal rates reflect the impact due to the asynchronous observations, which are slower than that with synchronous observations. Furthermore, we demonstrate that the proposed localized estimator with thresholding achieves the minimax optimal convergence rates. We also illustrate the empirical performance of the proposed estimator with extensive simulation studies and a real data analysis

    StolenEncoder: Stealing Pre-trained Encoders in Self-supervised Learning

    Full text link
    Pre-trained encoders are general-purpose feature extractors that can be used for many downstream tasks. Recent progress in self-supervised learning can pre-train highly effective encoders using a large volume of unlabeled data, leading to the emerging encoder as a service (EaaS). A pre-trained encoder may be deemed confidential because its training requires lots of data and computation resources as well as its public release may facilitate misuse of AI, e.g., for deepfakes generation. In this paper, we propose the first attack called StolenEncoder to steal pre-trained image encoders. We evaluate StolenEncoder on multiple target encoders pre-trained by ourselves and three real-world target encoders including the ImageNet encoder pre-trained by Google, CLIP encoder pre-trained by OpenAI, and Clarifai's General Embedding encoder deployed as a paid EaaS. Our results show that our stolen encoders have similar functionality with the target encoders. In particular, the downstream classifiers built upon a target encoder and a stolen one have similar accuracy. Moreover, stealing a target encoder using StolenEncoder requires much less data and computation resources than pre-training it from scratch. We also explore three defenses that perturb feature vectors produced by a target encoder. Our results show these defenses are not enough to mitigate StolenEncoder.Comment: To appear in ACM Conference on Computer and Communications Security (CCS), 202

    Dual Adversarial Resilience for Collaborating Robust Underwater Image Enhancement and Perception

    Full text link
    Due to the uneven scattering and absorption of different light wavelengths in aquatic environments, underwater images suffer from low visibility and clear color deviations. With the advancement of autonomous underwater vehicles, extensive research has been conducted on learning-based underwater enhancement algorithms. These works can generate visually pleasing enhanced images and mitigate the adverse effects of degraded images on subsequent perception tasks. However, learning-based methods are susceptible to the inherent fragility of adversarial attacks, causing significant disruption in results. In this work, we introduce a collaborative adversarial resilience network, dubbed CARNet, for underwater image enhancement and subsequent detection tasks. Concretely, we first introduce an invertible network with strong perturbation-perceptual abilities to isolate attacks from underwater images, preventing interference with image enhancement and perceptual tasks. Furthermore, we propose a synchronized attack training strategy with both visual-driven and perception-driven attacks enabling the network to discern and remove various types of attacks. Additionally, we incorporate an attack pattern discriminator to heighten the robustness of the network against different attacks. Extensive experiments demonstrate that the proposed method outputs visually appealing enhancement images and perform averagely 6.71% higher detection mAP than state-of-the-art methods.Comment: 9 pages, 9 figure

    AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware Robust Adversarial Training

    Full text link
    Monocular 3D object detection plays a pivotal role in the field of autonomous driving and numerous deep learning-based methods have made significant breakthroughs in this area. Despite the advancements in detection accuracy and efficiency, these models tend to fail when faced with such attacks, rendering them ineffective. Therefore, bolstering the adversarial robustness of 3D detection models has become a crucial issue that demands immediate attention and innovative solutions. To mitigate this issue, we propose a depth-aware robust adversarial training method for monocular 3D object detection, dubbed DART3D. Specifically, we first design an adversarial attack that iteratively degrades the 2D and 3D perception capabilities of 3D object detection models(IDP), serves as the foundation for our subsequent defense mechanism. In response to this attack, we propose an uncertainty-based residual learning method for adversarial training. Our adversarial training approach capitalizes on the inherent uncertainty, enabling the model to significantly improve its robustness against adversarial attacks. We conducted extensive experiments on the KITTI 3D datasets, demonstrating that DART3D surpasses direct adversarial training (the most popular approach) under attacks in 3D object detection APR40AP_{R40} of car category for the Easy, Moderate, and Hard settings, with improvements of 4.415%, 4.112%, and 3.195%, respectively

    Improving Misaligned Multi-modality Image Fusion with One-stage Progressive Dense Registration

    Full text link
    Misalignments between multi-modality images pose challenges in image fusion, manifesting as structural distortions and edge ghosts. Existing efforts commonly resort to registering first and fusing later, typically employing two cascaded stages for registration,i.e., coarse registration and fine registration. Both stages directly estimate the respective target deformation fields. In this paper, we argue that the separated two-stage registration is not compact, and the direct estimation of the target deformation fields is not accurate enough. To address these challenges, we propose a Cross-modality Multi-scale Progressive Dense Registration (C-MPDR) scheme, which accomplishes the coarse-to-fine registration exclusively using a one-stage optimization, thus improving the fusion performance of misaligned multi-modality images. Specifically, two pivotal components are involved, a dense Deformation Field Fusion (DFF) module and a Progressive Feature Fine (PFF) module. The DFF aggregates the predicted multi-scale deformation sub-fields at the current scale, while the PFF progressively refines the remaining misaligned features. Both work together to accurately estimate the final deformation fields. In addition, we develop a Transformer-Conv-based Fusion (TCF) subnetwork that considers local and long-range feature dependencies, allowing us to capture more informative features from the registered infrared and visible images for the generation of high-quality fused images. Extensive experimental analysis demonstrates the superiority of the proposed method in the fusion of misaligned cross-modality images

    WaterFlow: Heuristic Normalizing Flow for Underwater Image Enhancement and Beyond

    Full text link
    Underwater images suffer from light refraction and absorption, which impairs visibility and interferes the subsequent applications. Existing underwater image enhancement methods mainly focus on image quality improvement, ignoring the effect on practice. To balance the visual quality and application, we propose a heuristic normalizing flow for detection-driven underwater image enhancement, dubbed WaterFlow. Specifically, we first develop an invertible mapping to achieve the translation between the degraded image and its clear counterpart. Considering the differentiability and interpretability, we incorporate the heuristic prior into the data-driven mapping procedure, where the ambient light and medium transmission coefficient benefit credible generation. Furthermore, we introduce a detection perception module to transmit the implicit semantic guidance into the enhancement procedure, where the enhanced images hold more detection-favorable features and are able to promote the detection performance. Extensive experiments prove the superiority of our WaterFlow, against state-of-the-art methods quantitatively and qualitatively.Comment: 10 pages, 13 figure
    • …
    corecore